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ABSTRACT
The microservice architecture allows developers to divide the core
functionality of their software system into multiple smaller services.
However, this architectural style also makes it harder for them to
debug and assess whether the system’s deployment conforms to
its implementation. We present CATMA, an automated tool that
detects non-conformances between the system’s deployment and
implementation. It automatically visualizes and generates potential
interpretations for the detected discrepancies. Our evaluation of
CATMA shows promising results in terms of performance and
providing useful insights. CATMA is available at https://cyber-
analytics.nl/catma.github.io/, and a demonstration video is available
at https://youtu.be/WKP1hG-TDKc.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Automated static analysis; Dynamic analysis.
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1 INTRODUCTION
Software systems following the microservice architectural para-
digm have their core functionality split into multiple smaller com-
ponents. These microservices (or just services) of a microservice
application (MSA) communicate via lightweight communication
protocols such as REST APIs or message brokers. The services of an
MSA can be developed, maintained, and deployed independently,
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paving the way for an increasing trend in the adoption of this ar-
chitectural style. Despite these benefits, MSAs pose a challenge
in gaining a comprehensive overview due to their inherently de-
coupled and distributed nature. Consequently, debugging faults
is a time-consuming process because the localization of the root
cause is challenging. According to studies, developers usually take
several days to debug and find the cause of a fault [9, 20]. Many
approaches for the automatic extraction of architectural representa-
tions of MSA have been proposed [1, 5, 10, 15], thus addressing the
challenge of gaining an overview of the applications’ architecture.
Some approaches combine static and dynamic analysis to build the
architectural models. Also, multiple fault localization techniques
for MSAs have been proposed [7, 21], which use dynamic analysis
to identify faults and pinpoint the root cause in code. However, to
the best of our knowledge, no work compares the results from static
and dynamic analysis rather than merging them. Moreover, none
of the existing fault localization approaches offer explainability in
the form of possible interpretations for the faults.

In this paper, we present CATMA, a novel tool designed to
analyze and compare statically and dynamically obtained archi-
tectural models. CATMA autonomously identifies potential non-
conformances between these models, generating easily accessi-
ble visualizations for users and providing concise interpretations.
These interpretations reduce the number of lines in source code that
users need to scrutinize when investigating a non-conformance.
We tested CATMA on four open-source MSAs and conducted a pre-
liminary usability study with two participants. The results indicate
that the tool effectively supports developers during the localization
and debugging of non-conformances, demonstrating its usefulness
and potential in the debugging landscape for microservices.

2 RUNNING EXAMPLE
The software engineering team of ZYX Inc. is working on their
new web application for selling tech products. They embrace the
microservice architectural style as this allows them to split up into
smaller groups and work independently on the core functionalities
of their application. Each member follows the best practices of
software engineering; using static analysis to detect faults and
testing each functionality before its deployment. After finishing
the development, they deploy the application to test it out. To their
surprise, they notice that the monitoring service does not receive
any metrics data. They are unsure of the cause of this discrepancy
since a static analysis tool correctly detects the line of code that
implements the transmission of metrics data and does not raise any
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Figure 1: CATMA’s workflow. Input models are processed( 1 )
and non-conformances between them detected ( 2 ) and vi-
sualized ( 4 ). Each non-conformance is visualized ( 5 ) and
possible interpretations for it are generated ( 3 ).

warnings. They spend several days analyzing different log files, but
have no luck in finding the underlying cause. They scratch their
heads and start wondering whether there is a tool that provides:
• the detection of discrepancies between the implementation and
deployment of MSAs,

• a high-level overview of such discrepancies, and
• descriptions of the potential root causes.

3 CATMA
Worfklow. Figure 1 depicts CATMA’s workflow. First, the Model
Processor 1 reads the input models (static and dynamic) to ex-
tract architectural components. The obtained data is passed on to
the Non-conformance Detector 2 , which checks whether there are
any non-conformances (discrepancies) between static and dynamic
models. If a non-conformance is detected, it is forwarded to both
the Interpretation Generator 3 and the Non-conformance Visual-
izer 4 . The latter ( 4 ) collects all detected non-conformances and
generates a visualization of the system’s architecture that shows
the non-conformances. The former ( 3 ) generates a set of possible
interpretations for each detected non-conformance, which describe
potential causes. These interpretations are forwarded to the Inter-
pretation Visualizer 5 , which generates HTML pages that visualize
the interpretations. CATMA is designed to be modular. Each com-
ponent can be replaced or expanded to fit the user’s needs. The tool
is invoked via the command line (see Listing 1).

$ ~/Doc/Git/CATMA python3 CATMA.py \
--static_model_path

data/ewolff_microservice/ewolff_microservice_static_model.json \
--dynamic_models_path data/ewolff_microservice/dynamic_models/ \
--output_path ./ output/
Reading configuration file ...
Processing static model ...
Processing dynamic model ...
Detecting non -conformances: 100% |=====|13/13 [00:00 <00:00 , 83245.73 it/s]
Detecting non -conformances: 100% |=====|13/13 [00:00 <00:00 , 152733.76 it/s]
Detected 2 static non -conformances and 1 dynamic non -conformance
between implementation and deployment of the system!
Generating non -conformance interpretations ...
Generating non -conformance visualizations ...
Generating interpretation visualizations ...

Listing 1: Command-line invocation of CATMA.

Detecting Non-conformances. As static models, CATMA ac-
cepts dataflow diagrams (DFDs) like the ones introduced by Schnei-
der and Scandariato [13]. These DFDs are automatically extracted
from source code and configuration files by searching for relevant
keywords and using them as evidence to build relationships be-
tween services. As dynamic models, state machines inferred from

HTTP events logs are expected. They are created using a simi-
lar model-inference approach as presented by Cao et al. [3]. The
approach first extracts logs from a Kubernetes cluster using Pack-
etbeat. It then utilizes Flexfringe [16] to generate behavioral traces
and learns a state machine from these traces. The Model Processor
extracts services and connections between them from both input
models. They represent the application’s architecture and are used
to detect non-conformances. In the DFD, nodes and edges depict the
services and information flows between them, respectively. We can,
therefore, directly extract the nodes and edges. In a state machine,
services and their corresponding relations are represented differ-
ently; each transition in a state machine indicates which services
in the system have communicated with each other. Thus, nodes
and edges are extracted from the transitions of the state machines.
The Model Processor creates a set of nodes and edges for both input
models, where edges are represented as “service X→ service Y” and
denote the communication relationship between the two services.

Non-conformances are detected by identifying differences be-
tween the sets of nodes and edges. The Non-conformance Detector
iterates through the sets and checks for each item whether it exists
in both corresponding sets. We define static non-conformances as
nodes or edges missing from the static model (compared to the
dynamic model) and dynamic non-conformances as those missing
from the dynamic model. Each item is tagged according to this
comparison, i.e., indicating whether it is present in both, only the
static, or only the dynamic model. The tagged sets of nodes and
edges are passed to components 3 and 4 .

The Non-conformance Visualizer is responsible for creating a
graphical representation of any detected non-conformances. It gen-
erates a PlantUML file (see plantuml.com) which presents the nodes
and edges as a graph and where a coloring scheme highlights any
found non-conformances. Model items observed in both models
are colored black, items only observed in the static model (dynamic
non-conformances) are colored blue, and items only observed in
the dynamic model (static non-conformances) are colored orange.
In addition, dynamic and static non-conformances are visually dis-
tinguished by means of dotted and dashed lines, respectively.

Interpreting Non-conformances. CATMA generates a set of
possible interpretations for each detected non-conformance. These
interpretations are visualized in an HTML page by the Interpreta-
tion Visualizer. The HTML page helps users analyze the potential
causes of non-conformances. CATMA presents a specific set of
interpretations for both types of non-conformance. The generated
HTML pages contain (1) the type, definition, and involved services
of the non-conformance, (2) the set of possible interpretations, and
(3) additional details that support the understanding of the non-
conformance. In the following, (2) and (3) are described further.

Providing Interpretations of Non-Conformances. A set of high-
level textual interpretations is provided, which describe possible
underlying causes of the detected non-conformances. The interpre-
tations are meant to serve as possible starting points to debug found
non-conformances. Currently, the generation is based solely on the
type of non-conformance, i.e., whether it is static or dynamic. We
formulated a text describing possible interpretations for both types
of non-conformances, and the corresponding one is presented to
the user. As the basis for these interpretations, we collected known
causes of non-conformances from the literature (e.g., [8, 18]). These
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Figure 2: Example set of textual interpretations.

causes range from standard programming errors made in software
development to common causes for issues encountered by devel-
opers of MSAs. As an example, misconfiguration of services is
a common cause of dynamic non-conformances in MSAs. When
services are not properly configured, they become undiscoverable
by other services, leading to missing expected runtime behaviors.
CATMA uses this information as a basis for the generation of one in-
terpretation for a dynamic non-conformance. For the collection, we
disregarded non-conformances rooted in hardware-related issues,
e.g., due to non-deterministic behavior because of multi-threading
or similar effects. Figure 2 presents the set of textual interpretations
that are provided for a static non-conformance.

Our future work will predominantly focus on this part of the
tool, specifically on implementing a more intelligent generation of
applicable interpretations. In this regard, we will analyze indicators
for each cause of non-conformances. These indicators will then
be used to decide whether a cause is plausible or not for a given
non-conformance. This will lead to the generation of a tailored set
of possible interpretations for each found non-conformance. The
already carried-out analysis of the related literature provides the
basis for this future work.

Additional details. The generated HTML page also presents addi-
tional details that could aid the user with the understanding of the
detected non-conformance. In the case of static non-conformances,
a state machine is visualized that depicts the unexpected sequential
communication behavior detected between the involved services.
The most frequently occurring calls between the involved services
are presented in a human-readable format right after the state ma-
chine model. This insight can be used to understand why such
calls were made between the involved services. Figures 3 and 4
show an example of a state machine and the most frequent calls,
respectively. In the case of a dynamic non-conformance, we instead
leverage the traceability information contained in the static model
to point to the code that shows the expected behavior. Specifically,
the page presents (1) the line of code responsible for triggering the
missing runtime event (i.e., the line of code that should have been
executed), (2) the sequence of events that should trigger the missing
runtime event, and (3) human-readable call details extracted for the
previous point. Figure 5 provides a snapshot of this set of details.
Furthermore, the state machines learned for each involved service
are presented on the HTML page.

4 TOOL EVALUATION
Performance Analysis. We evaluated CATMA’s performance in
terms of time to detect non-conformances in MSA. For this, we

State 0

State 1

8761.0__>eureka>css>wro.css__200.0__get__user__eureka
10 

State 2

8761.0__>__200.0__get__user__eureka
1 

I

8761.0__>__200.0__get__user__eureka
9 

8761.0__>favicon.ico__404.0__get__user__eureka
1 

Figure 3: Part of statemachine showing unexpected behavior.

Figure 4: Most frequent calls for unexpected behavior.

Figure 5: Example details for dynamic non-conformance.

Table 1: CATMA’s performance statistics on multiple MSAs

Name #LOC # Services
# Detected

Non-Conformances
(static / dynamic)

Avg.
Runtime (seconds)

Springboot-Microservice1 879 9 0 / 16 4.3
Microservice Sample2 3117 7 2 / 1 3.0
Spring PetClinic3 3990 12 1 / 26 78.6
Piggy Metrics4 9977 17 3 / 11 53.9

selected 4 DFDs of open-source MSAs from the dataset created
by Schneider et al. [14], deployed these MSAs, and created state
machine models for them. Then, we ran CATMA on the obtained
models and measured the time of the analysis. Table 1 presents the
time for analyzing the 4 selectedMSAs (averaged over 10 executions
per MSA). This evaluation allows us to quantify the benefits of
utilizing CATMA compared to manual analysis.

The data clearly demonstrates that CATMA substantially accel-
erates the analysis process. While developers often invest days in
resolving issues (as reported in the study conducted by Zhou et

1https://github.com/shabbirdwd53/springboot-microservice
2https://github.com/ewolff/microservice
3https://github.com/spring-petclinic/spring-petclinic-microservices
4https://github.com/sqshq/piggymetrics
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Table 2: Trade-off between the size and correctness.

Avg. # Edges Avg. # Nodes Avg. Recall Avg. Specificity Avg. Balanced Accuracy

1 1 0.0 1.0 0.5
127 99 0.368 0.998 0.683
790 646 0.904 0.990 0.947
1982 1843 0.920 0.986 0.953
4714 4570 1.0 0.978 0.989

al. [20]), our tool accomplishes the same task in a matter of min-
utes. Thus, CATMA can substantially reduce the time spent on
debugging issues, offering a valuable resource for developers.

Pilot Study. We conducted a small-scale pilot study to investi-
gate CATMA’s usefulness. We report an initial assessment of this
pilot study based on a think-aloud interview setup with two par-
ticipants. The participants were recruited from the lab of one of
the authors (both with a computer science background) and have
no relation to the work done for CATMA. The participants got an
introduction to MSAs and were allowed to interact with CATMA
before the start of the interview. During the interview, we asked
several questions that would provide us insights on what are the
most useful elements presented in the output generated by CATMA.
A complete transcript of the interview can be found on our Figshare
page [4]. The following points summarize the most useful elements
from CATMA’s output: (1) the model-based visualization that shows
where non-conformances are detected, (2) the set of possible in-
terpretations providing the potential causes for the corresponding
non-conformance, (3) the ability to jump from the dynamic model
(state machine) back to the source code, (4) static non-conformances
provide insights on the security implication of the system, and (5)
the type of the non-conformances: static non-conformances provide
insights on the security implication.

Correctness of Dynamic Models. As the state machines ap-
proximate the provided log data, it is helpful to understand the
trade-off between the correctness and the size of the model as it
could influence the detection of non-conformances; a small state
machine generalizes too much and introduces inaccuracies, a large
state machine captures all possible behavior but might be hard to
understand and process. To evaluate this aspect, we use a tech-
nique similar to the one proposed by Walkinshaw et al. [17]. Ta-
ble 2 presents the average results computed from a 10-fold cross-
validation experiment. As expected, smaller state machines intro-
duce more inaccuracies, leading to lower balanced accuracy scores.
This suggests that smaller state machines do lead to more inac-
curacies in the detection of non-conformances. Furthermore, the
accuracy scores appear to plateau as the state machine grows in size.
This suggests that considerably larger state machines do not per-
form significantly better in the detection of non-conformances and
selecting the largest possible model for the detection is redundant.
Learning a moderate-sized state machine from input data should
provide reliable performance for detecting non-conformances.

5 RELATEDWORK
Several studies have demonstrated that architectural software repre-
sentations can assist developers during manual system analysis ac-
tivities [2, 6, 12]. To automate such processes, several approaches in
the related literature combine static and dynamic analysis for archi-
tecture reconstruction of MSAs. MicroArt presented by Granchelli

et al.[5], MiSAR presented by Alshuqayran et al. [1], and 𝜇TOSCA
presented by Soldani et al. [15] all extract the list of microservices
statically by parsing deployment files. Connections between them
are detected dynamically by leveraging service discovery services
that exist in the analyzed applications or by injecting different
monitoring tools. VMAWV presented by Ma et al. [10] instead
queries existing service discovery services to retrieve the list of
services and uses static analysis to detect connections. While these
approaches combine static and dynamic analysis, none of them
compare complete architectural models obtained via the two tech-
niques. Since our approach performs this comparison to identify
non-conformances, we believe it to be novel in this regard.

The approach DOMICO by Zhong et al. [19] also detects non-
conformances between system representations of different stages
in the development process, however, they compare the intended
design (UML) against the actual implementation (static model). This
approach is partly based on the approach introduced by Murphy
et al. [11]. The proposed approach by Murphy et al. computes a
reflexion model by finding differences between the architectural
model extracted from the source code and the mental (architectural)
model constructed by a system developer. Both approaches detect
non-conformances between design and implementation, whereas
CATMA detects non-conformances between the system’s imple-
mentation and deployment.

6 CONCLUSION & FUTUREWORK
We present CATMA, a tool for automatically conducting confor-
mance analysis of MSAs. It detects possible non-conformances by
computing differences between a statically and a dynamically ob-
tained architectural model of the MSA. Found non-conformances
are visualized in an easily accessible way. Further, a set of possible
interpretations is generated, showing the non-conformances’ poten-
tial causes. In a preliminary evaluation, CATMA showed promising
results in terms of performance as well as usability. In our evalua-
tion, CATMA identified a non-conformance in an open-source MSA
on GitHub. A misconfiguration in the Hystrix 5 monitoring dash-
board prevented stream data from being visualized as intended in
the implementation. This is a good example of a non-conformance
between the intended and observed behaviors of the MSA. We no-
tified the developers and our fix was accepted 6. Hence, CATMA
has already shown its first –albeit small– impact on MSA.

As future work, we will extend CATMA with a more intelli-
gent technique for selecting suitable interpretations for found non-
conformances. Further, the approach would benefit from additional
validation activities concerning its usefulness and possible enhance-
ments. We plan a user study with developers in which they identify
non-conformances with the help of CATMA. Finally, we will inves-
tigate the feasibility of using other types of models as input and
the detection capabilities of other non-conformances.
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